If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20^2=4x^2+3x^2
We move all terms to the left:
20^2-(4x^2+3x^2)=0
We add all the numbers together, and all the variables
-(4x^2+3x^2)+400=0
We get rid of parentheses
-4x^2-3x^2+400=0
We add all the numbers together, and all the variables
-7x^2+400=0
a = -7; b = 0; c = +400;
Δ = b2-4ac
Δ = 02-4·(-7)·400
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{7}}{2*-7}=\frac{0-40\sqrt{7}}{-14} =-\frac{40\sqrt{7}}{-14} =-\frac{20\sqrt{7}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{7}}{2*-7}=\frac{0+40\sqrt{7}}{-14} =\frac{40\sqrt{7}}{-14} =\frac{20\sqrt{7}}{-7} $
| 23=-x+5x+7 | | 44=(2w^2)-3w | | 10−3n=2 | | 3-2(x+4)=3 | | (2/5)x+(4/5)=(-4/5) | | 7x+6=5x-18 | | 2/5(x)+4/5=-4/5 | | 5a=6a+-15 | | -9(u-5)=-2u-11 | | -41-12m=-5-4(6m-9) | | 5x+13=3(x+1) | | 7x/3x=24 | | 8+1/4x=5 | | 4(y-4)=7y-7 | | 65+90+6x+1=180 | | 4+1/5x=0 | | -11+n+1+2n=5n-4 | | 6x+5+15+28=180 | | 0.5x^2-7x+36=0 | | —4(u—6)=—2u+34 | | -2x(x-5)=5(-3x+4) | | —4(u-6)=—2u+34 | | 2x+2=124 | | 3e=7 | | 7k+3k=11 | | -20=-16t^2+160t | | -5=y/4-8 | | 4+2x=3x=-0.5 | | 5x+8x+7=-14 | | W(w-6)^=0 | | 3/2x-x=x/6-2/3 | | 6x-7=6x+8 |